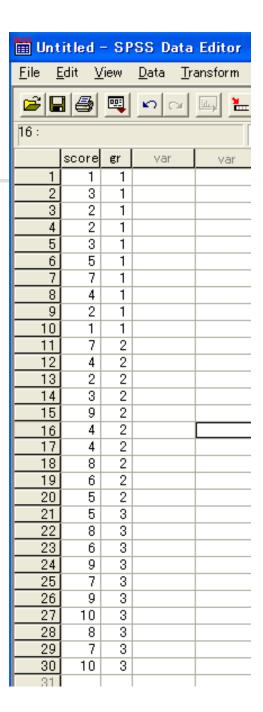
# Analysis of Variance (ANOVA)

#### Hirotaka Onishi, MD, MHPE, PhD

Dept. of International Cooperation for Medical Education, International Research Center for Medical Education, Graduate School of Medicine, The University of Tokyo

## What Is H<sub>0</sub> Meaning?


- $\bullet \quad H_0: \overline{X}_1 = \overline{X}_2 = \overline{X}_3$
- Even if H<sub>0</sub> is rejected, it does not automatically mean x<sub>1</sub>< x<sub>2</sub> or x<sub>2</sub> < x<sub>3</sub>
- To prove the difference between specific two variables, post-hoc tests will be used.
  - Scheffé test: most stringent
  - Bonferroni:  $\alpha$  is divided by the number of tests.
  - Tukey's Honestly Significant Difference (HSD): numbers of cases must be the same



- Within-subject data
  - Longitudinally (repeatedly) collected data
  - Multiple items in a questionnaire
- Between-subject
  - Different groups of subjects
    - Demographic data: Gender, age group...
    - Study vs control groups

#### **Data Format**

| control              | APN             | APN ph +        |  |
|----------------------|-----------------|-----------------|--|
|                      | phone           | visits          |  |
| 1                    | 7               | 5               |  |
| 3                    | 4               | 8               |  |
| 2                    | 2               | 6               |  |
| 2                    | 3               | 9               |  |
| 3                    | 9               | 7               |  |
| 5                    | 4               | 9               |  |
| 7                    | 4               | 10              |  |
| 4                    | 8               | 8               |  |
| 2                    | 6               | 7               |  |
| 1                    | 5               | 10              |  |
| $\overline{x} = 3.0$ | $\bar{x} = 5.2$ | $\bar{x} = 7.9$ |  |
| sd = 1.89            | sd = 2.25       | sd = 1.66       |  |



## **Data Format**

- In SPSS or Excel
  - Within-subject data are put in parallel → You have to define the group to conduct the analysis
  - Between-subject data are put in tandem

| Ν | atio | n [ | HiB | HiY | HiR |
|---|------|-----|-----|-----|-----|
|   | 1    |     | 10  | 6   | 19  |
|   | 1    |     | 12  | 11  | 16  |
|   | 1    |     | 9   | 8   | 19  |
|   | 1    |     | 10  | 9   | 19  |
|   | 2    |     | 8   | 7   | 20  |
|   | 2    |     | 10  | 7   | 20  |
|   | 2    |     | 8   | 9   | 16  |
|   | 2    |     | 9   | 9   | 19  |
|   | 3    |     | 8   | 15  | 9   |
|   | 3    |     | 7   | 19  | 6   |
|   | 3    |     | 11  | 14  | 6   |
|   | 3    |     | 7   | 18  | 8   |

#### **Select Post-hoc Test**

When three or more options are

- Within-subject
  - Sidak is often selected
- Between-subject
  - Tukey is one of the most frequently used post-hoc test

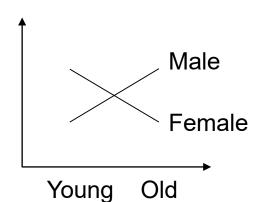
## **Sphericity**

- If within-subject data has three or more options, sphericity might be a problem.
  - When "test of homogeneity of variances" is significant, 3 Steps will be taken:
  - (1) sphericity supposed
  - (2) lowest, and
  - (3) Greenhouse-Geisser's modification



|       | Male | Female |    |
|-------|------|--------|----|
| Young | 5    | 10     | 15 |
| Old   | 10   | 5      | 15 |
|       | 15   | 15 ^   |    |

Main effect for Age

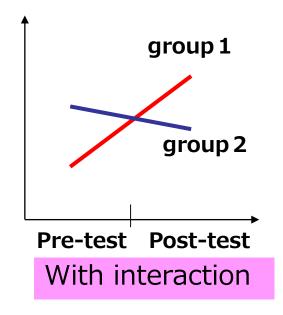

Main effect for Sex

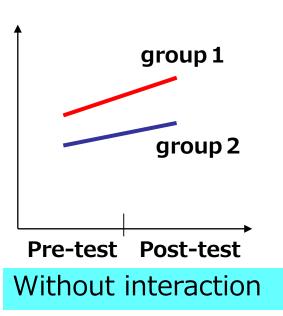
 $H_0$ :  $\mu_{male} = \mu_{female}$ 

 $H_1$ :  $H_0$  is false

H<sub>0</sub>: There is no interaction

 $H_1$ :  $H_0$  is false





 $H_0$ :  $\mu_{young} = \mu_{old}$ 

H₁: H₀ is false

## 2way, 3way ANOVA

- More than one factors are compared simultaneously.
- Both within-subject and between subject data are combined for one analysis.
- Interaction is another issue for 2way ANOVA or more.





検定・分析の種類別の代表的な効果量の指標と大きさの目安

|                                                                               |                |                  | 効果量の目安  |          |         |
|-------------------------------------------------------------------------------|----------------|------------------|---------|----------|---------|
| 使用される検定 (分析)                                                                  | 対象と注意          | 効果量の指標           | 小       | 中        | 大       |
|                                                                               |                |                  | (Small) | (Medium) | (Large) |
| 相関分析                                                                          |                | r                | .10     | .30      | .50     |
| 重回帰分析                                                                         |                | $R^2$            | .02     | .13      | .26     |
|                                                                               |                | $f^2$            | .02     | .15      | .35     |
| t 検定 (t-test)                                                                 | rとdは           | r                | .10     | .30      | .50     |
|                                                                               | 対応ありの場合<br>は注意 | d                | .20     | .50      | .80     |
|                                                                               |                | $\eta^2$         | .01     | .06      | .14     |
|                                                                               | 全体の検定          | partial $\eta^2$ | -       | -        | -       |
| 一元配置分散分析                                                                      | 土中心模定          | $\omega^2$       | .01     | .09      | .25     |
| (One-way ANOVA)                                                               |                | f                | .10     | .25      | .40     |
|                                                                               | 多重比較           | r                | .10     | .30      | .50     |
|                                                                               |                | d                | .20     | .50      | .80     |
|                                                                               |                | $\eta^2$         | .01     | .06      | .14     |
| 二元配置分散分析<br>(Two-way ANOVA)<br>多元配置分散分析*<br>(Multi-way ANOVA)<br>*三元配置以上の分散分析 | 主効果            | partial $\eta^2$ | -       | -        | -       |
|                                                                               |                | $\omega^2$       | .01     | .09      | .25     |
|                                                                               | 交互作用           | $\eta^2$         | .01     | .06      | .14     |
|                                                                               |                | partial $\eta^2$ | -       | -        | -       |
|                                                                               |                | $\omega^2$       | .01     | .09      | .25     |
|                                                                               | 多重比較           | r                | .10     | .30      | .50     |
|                                                                               |                | d                | .20     | .50      | .80     |

水本, 竹内. 研究論文における効果量の報告のために. 英語教育研究 31, 57-66, 2008

## **Exercise 1**

- Open 2wayANOVA.xlsx
- Seek for the relationship (1) age (2) # of delivery and (3) sex of the baby (1 male, 0 female)

対馬栄輝. SPSSで学ぶ医療系データ解析:分析内容の理解と手順解説、 バランスのとれた医療統計入門. pp166-174



- Open repANOVA.xlsx
- 23 young subjects measured height in 3 consecutive years.
- Are they growing?
- Change in the data format might be needed.

対馬栄輝. SPSSで学ぶ医療系データ解析:分析内容の理解と手順解説、バランスのとれた医療統計入門. pp182-188

## **Exercise 3**

- Open water learning.xlsx
- 9 divers participated in the experiments of learning words in 8 conditions
  - 1<sup>st</sup> digit: reproduction—1, reaffirmation—2
    - Reproduction: recall what was experienced as it was
    - Reaffirmation: confirm that what is being questioned is what was experienced.
  - 2<sup>nd</sup> digit: learning on the ground—1, in the water—2
  - 3<sup>rd</sup> digit: testing on the ground–1, in the water–2

山内光哉. 心理・教育のための分散分析と多重比較-エクセル・SPSS 解説付き. pp199-212

## Exercise 4

- Open MixedANOVA.xlsx
- 12 workers from 3 countries (Japan 1, Korea – 2, US – 3) participated in the physical exercise.
- Conditions
  - Color lighting: blue, red and yellow
  - Temperature: high, normal and low

竹原卓真. SPSSのススメ(2)3要因の分散分析をすべてカバー. pp198-302